Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
Statistical Charts
Submit Problem
Online Status
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Hard Life
Time Limit: 8000MSMemory Limit: 65536K
Total Submissions: 11334Accepted: 3313
Case Time Limit: 2000MSSpecial Judge


John is a Chief Executive Officer at a privately owned medium size company. The owner of the company has decided to make his son Scott a manager in the company. John fears that the owner will ultimately give CEO position to Scott if he does well on his new manager position, so he decided to make Scott’s life as hard as possible by carefully selecting the team he is going to manage in the company.

John knows which pairs of his people work poorly in the same team. John introduced a hardness factor of a team — it is a number of pairs of people from this team who work poorly in the same team divided by the total number of people in the team. The larger is the hardness factor, the harder is this team to manage. John wants to find a group of people in the company that are hardest to manage and make it Scott’s team. Please, help him.

In the example on the picture the hardest team consists of people 1, 2, 4, and 5. Among 4 of them 5 pairs work poorly in the same team, thus hardness factor is equal to 54. If we add person number 3 to the team then hardness factor decreases to 65.


The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 1000). Here n is a total number of people in the company (people are numbered from 1 to n), and m is the number of pairs of people who work poorly in the same team. Next m lines describe those pairs with two integer numbers ai and bi (1 ≤ ai, bin, aibi) on a line. The order of people in a pair is arbitrary and no pair is listed twice.


Write to the output file an integer number k (1 ≤ kn) — the number of people in the hardest team, followed by k lines listing people from this team in ascending order. If there are multiple teams with the same hardness factor then write any one.

Sample Input

sample input #1
5 6
1 5
5 4
4 2
2 5
1 2
3 1

sample input #2
4 0

Sample Output

sample output #1

sample output #2


Note, that in the last example any team has hardness factor of zero, and any non-empty list of people is a valid answer.


[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator