Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|

Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |

Language: Ambiguous permutations
Description Some programming contest problems are really tricky: not only do they require a different output format from what you might have expected, but also the sample output does not show the difference. For an example, let us look at permutations.
A permutation of the integers 1 to n is an ordering of these integers. So the natural way to represent a permutation is to list the integers in this order. With n = 5, a permutation might look like 2, 3, 4, 5, 1. However, there is another possibility of representing a permutation: You create a list of numbers where the i-th number is the position of the integer i in the permutation. Let us call this second possibility an inverse permutation. The inverse permutation for the sequence above is 5, 1, 2, 3, 4. An ambiguous permutation is a permutation which cannot be distinguished from its inverse permutation. The permutation 1, 4, 3, 2 for example is ambiguous, because its inverse permutation is the same. To get rid of such annoying sample test cases, you have to write a program which detects if a given permutation is ambiguous or not. Input The input contains several test cases.
The first line of each test case contains an integer n (1 <= n <= 100000). Then a permutation of the integers 1 to n follows in the next line. There is exactly one space character between consecutive integers. You can assume that every integer between 1 and n appears exactly once in the permutation. The last test case is followed by a zero. Output For each test case output whether the permutation is ambiguous or not. Adhere to the format shown in the sample output. Sample Input 4 1 4 3 2 5 2 3 4 5 1 1 1 0 Sample Output ambiguous not ambiguous ambiguous Hint Huge input,scanf is recommended. Source |

[Submit] [Go Back] [Status] [Discuss]

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di

Any problem, Please Contact Administrator