Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
学习 学习In Reply To:推导: Posted by:WuChengWei at 2008-05-03 15:13:01 > > 1+2+...+(a-1) = (a+1)+(a+2)+...+b > ==> a(a-1) = (a+1+b)(b-a) //等差数列求和 > ==> a^2 - a = b^2-a^2 +b-a > ==> 2*a^2 = b^2+b > ==> 8*a^2 = 4*b^2 +4*b +1-1 > ==> 2*(2*a)^2 = (2*b+1) -1 > ==> (2*b+1)^2 - 2*(2*a)^2 = 1 > > 令 x = 2*b+1, y= 2*a > 则 x^2 - 2*y^2 = 1 *(1) > > 设 (x1,y1) (x2,y2) 是方程的解 > 则有 x1^2 - 2*y1^2 = 1 (2) > x2^2 - 2*y2^2 = 1 (3) > > (2)*(3) ==> (x1^2 - 2*y1^2)*(x2^2 - 2*y2^2) =1 > ==> x1^2*x2^2 - (2*x1^2*y2^2+2*y1^2*x2^2) + 4*y1^2*y2^2 = 1 > ==> (x1*x2)^2+(2*y1*y2)^2+4*x1*x2*y1*y2 > - (2*x1^2*y2^2+2*y1^2*x2^2 + 4*x1*x2*y1*y2) = 1 > ==> (x1*x2+2*y1*y2)^2 - 2*( x1*y2+x2*y1)^2 = 1 (4) > 令 p = x1*x2+2*y1*y2 > q = x1*y2+x2*y1 > 则 (4) ==> p^2 -2*q^2 = 1 所以 (p,q)也是方程 1的解 > > ps: 在(2)*(3)的推导中,辅助项“+4*x1*x2*y1*y2” 可以是减号 > 则 p = abs( x1*x2 - 2*y1*y2 ) > q = abs( x1*y2 - x2*y1) > > 则由题目中的 a1=6, b1=8 ==> x1 = 17, y1=12 > a2=35, b2=49 ==> x2 = 99, y2=70 > ==> p = abs(17*99-2*12*70) = abs(1683-1680) = 3 = 2*b+1 ==> b=1 > q = abs(17*70-12*99) = abs(1190-1188) = 2 = 2*a ====> a=1 > 得到的 (a,b) = (1,1)是最小对 > > 应用辅助项“+4*x1*x2*y1*y2”(加号)可以 > 由 (1,1)和(a1,b1)=(6,8) 推出(a2,b2) = (35, 49) > 由 (1,1)和(a2,b2)=(35, 49) 推出(a3,b3) = (204, 288) > 由 (1,1)和(a3,b3)=(204,288) 推出(a4,b4) = ... > ....................... Followed by: Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator