Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

此题应用分治

Posted by 200593141 at 2007-08-05 13:21:33 on Problem 3318
两个n×n 阶的矩阵A与B的乘积是另一个n×n 阶矩阵C,C可表示为假如每一个C(i, j) 都用此公式计算,则计算C所需要的操作次数为n3 m+n2 (n- 1) a,其中m表示一次乘法,a 表示一次加法或减法。

为了得到两个矩阵相乘的分而治之算法,需要: 1) 定义一个小问题,并指明小问题是如何进行乘法运算的; 2) 确定如何把一个大的问题划分成较小的问题,并指明如何对这些较小的问题进行乘法运算; 3) 最后指出如何根据小问题的结果得到大问题的结果。为了使讨论简便,假设n 是2的幂(也就是说, n是1,2,4,8,1 6,.)。

首先,假设n= 1时是一个小问题,n> 1时为一个大问题。后面将根据需要随时修改这个假设。对于1×1阶的小矩阵,可以通过将两矩阵中的两个元素直接相乘而得到结果。

考察一个n> 1的大问题。可以将这样的矩阵分成4个n/ 2×n/ 2阶的矩阵A1,A2,A3,和A4。当n 大于1且n 是2的幂时,n/ 2也是2的幂。因此较小矩阵也满足前面对矩阵大小的假设。矩阵Bi 和Ci 的定义与此类似.

根据上述公式,经过8次n/ 2×n/ 2阶矩阵乘法和4次n/ 2×n/ 2阶矩阵的加法,就可以计算出A与B的乘积。因此,这些公式能帮助我们实现分而治之算法。在算法的第二步,将递归使用分而治之算法把8个小矩阵再细分(见程序2 - 1 9)。算法的复杂性为(n3 ),此复杂性与程序2 - 2 4直接使用公式(2 - 1)所得到的复杂性是一样的。事实上,由于矩阵分割和再组合所花费的额外开销,使用分而治之算法得出结果的时间将比用程序2 - 2 4还要长。

为了得到更快的算法,需要简化矩阵分割和再组合这两个步骤。一种方案是使用S t r a s s e n方法得到7个小矩阵。这7个小矩阵为矩阵D, E, ., J,矩阵D到J可以通过7次矩阵乘法, 6次矩阵加法,和4次矩阵减法计算得出。前述的4个小矩阵可以由矩阵D到J通过6次矩阵加法和两次矩阵减法得出. 

用上述方案来解决n= 2的矩阵乘法。将某矩阵A和B相乘得结果C,如下所示:

因为n> 1,所以将A、B两矩阵分别划分为4个小矩阵,每个矩阵为1×1阶,仅包含一个元素。1×1阶矩阵的乘法为小问题,因此可以直接进行运算。利用计算D~J的公式,得:

D= 1(6-8)=-2

E= 4(7-5)= 8

F=(3 + 4)5 = 3 5

G=(1 + 2)8 = 2 4

H=(3-1)(5 + 6)= 2 2

I=(2-4)(7 + 8)=-3 0

J=(1 + 4)(5 + 8)= 6 5

根据以上结果可得:

对于上面这个2×2的例子,使用分而治之算法需要7次乘法和1 8次加/减法运算。而直接使用公式(2 - 1),则需要8次乘法和7次加/减法。要想使分而治之算法更快一些,则一次乘法所花费的时间必须比11次加/减法的时间要长。

假定S t r a s s e n矩阵分割方案仅用于n≥8的矩阵乘法,而对于n<8的矩阵乘法则直接利用公式(2 - 1)进行计算。则n= 8时,8×8矩阵相乘需要7次4×4矩阵乘法和1 8次4×4矩阵加/减法。每次矩阵乘法需花费6 4m+ 4 8a次操作,每次矩阵加法或减法需花费1 6a次操作。因此总的操作次数为7 ( 6 4m+ 4 8a) + 1 8 ( 1 6a) = 4 4 8m+ 6 2 4a。而使用直接计算方法,则需要5 1 2m+ 4 4 8a次操作。要使S t r a s s e n方法比直接计算方法快,至少要求5 1 2-4 4 8次乘法的开销比6 2 4-4 4 8次加/减法的开销大。或者说一次乘法的开销应该大于近似2 . 7 5次加/减法的开销。

假定n<1 6的矩阵是一个“小”问题,S t r a s s e n的分解方案仅仅用于n≥1 6的情况,对于n<1 6的矩阵相乘,直接利用公式( 2 - 1)。则当n= 1 6时使用分而治之算法需要7 ( 5 1 2m+ 4 4 8a) +1 8 ( 6 4a) = 3 5 8 4m+ 4 2 8 8a次操作。直接计算时需要4 0 9 6m+ 3 8 4 0a次操作。若一次乘法的开销与一次加/减法的开销相同,则S t r a s s e n方法需要7 8 7 2次操作及用于问题分解的额外时间,而直接计算方法则需要7 9 3 6次操作加上程序中执行f o r循环以及其他语句所花费的时间。即使直接计算方法所需要的操作次数比St r a s s e n方法少,但由于直接计算方法需要更多的额外开销,因此它也不见得会比S t r a s s e n方法快。

n 的值越大,Strassen 方法与直接计算方法所用的操作次数的差异就越大,因此对于足够大的n,Strassen 方法将更快。设t (n) 表示使用Strassen 分而治之方法所需的时间。因为大的矩阵会被递归地分割成小矩阵直到每个矩阵的大小小于或等于k(k至少为8,也许更大,具体值由计算机的性能决定). 用迭代方法计算,可得t(n) = (nl og27 )。因为l og27 ≈2 . 8 1,所以与直接计算方法的复杂性(n3 )相比,分而治之矩阵乘法算法有较大的改进。

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator