Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

关于本题的一些看法,不足之处,请见谅

Posted by watt at 2007-01-21 20:51:09 on Problem 2941
一个矩阵“Homogeneous ” <==> 其所有2*2子矩阵都是“Homogeneous”

证明如下:

首先看一个2*2矩阵a[2][2],只要a[0][0] + a[1][1] == a[1][0] + a[0][1]也就是a[0][1] - a[0][0] == a[1][1] - a[1][0]即可。

<==

对于n*n(n>=2)的矩阵,如果所有的2*2子矩阵都为“Homogeneous ”,那么可以得到a[i-1][j] - a[i-1][j-1] == a[i][j] - a[i][j-1] == kj(n > j > 0, n > i > 0),也就是说这个差是与i无关,那么,原始矩阵a可以写成两个矩阵b,c的和。b[i][0] = a[i][0](n > i >= 0),其他元素为0; c[i][j] = sum(kj),(n > j > 0).这样c的每一行元素都一样,每次取a的一个序列(index_0,index_1...index_(n-1))时,它们的和必然相同,因为这个和衡等于sum(b[i][0])+sum(ki) (n > i >= 0)。

==>

如果一个矩阵"Homogeneous ",b的定义和上面一样,c = a - b;显然c[i][0] = 0(n > i >= 0) 那么如果c[i1][j] != c[i2][j] (n > i1, i2 >= 0, n > j > 0, i1 != i2),那么在选择a的0,j两列的元素时候,第一次选择a[i1][0],a[i2][j],第二次选择a[i2][0],a[i1][j],其他列元素不变,显然矛盾(因为a[i1][0] == a[i2][0] == 0). 所以c[i1][j] == c[i2][j]。

问题得证

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator