Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

根据排序不等式证明

Posted by 10182528 at 2021-04-02 21:54:06 on Problem 1862
假设质量分别是a1,a2,a3...an(n>=2),不妨设最佳合并的顺序就是a1,a2,a3...an(n>=2)。合并之后的质量为m,则有:
m=2sqrt(2sqrt(2sqrt(......)sqrt(an-2))sqrt(an-1))sqrt(an)..............(1)

将(1)式两边取2^(n-1),有:

m^(2^(n-1))=2^(常数)*a1*a2*a3^2*a4^4*a5^8*...*an^(2^(n-2))..............(2)

将(2)式两边同时取对数ln,有:

(2^(n-1))*ln(m)=常数*ln(2)+ln(a1)+ln(a2)+2ln(a3)+4ln(a4)+...+2^(n-2)ln(an)

对上式右边使用函数y=2^x,y=ln(x)的单调递增性和排序不等式(反序和<=乱序和),可知,当上式左端取最小值时即右端取最小值即an<an-1<an-2<...<a1

因此最佳合并顺序为从大到小合并。

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator