| ||||||||||
| Online Judge | Problem Set | Authors | Online Contests | User | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest | |||||||||
C++ Kruskal算法AC代码#include <iostream>
#include <string.h>
using namespace std;
int n; //村庄数
int G[505][505]; //邻接矩阵
int dSet[505]; //连通分量数组,用于判断节点(村庄)是否在同一连通分量里
int Kruskal() {
int maxLen = 0;
for (int k = 0; k < n - 1; k++) { //n个节点的最小生成树有n-1条边,每次连接一条边共需n-1次循环
int minLen = INT_MAX; //初始最短边长定为最大值
int minV1 = 0;
int minV2 = 0;
for(int i = 1; i <= n; i++){
for(int j = i+1; j <= n; j++){ //目标:遍历邻接矩阵找出全图最短边
if(dSet[i] != dSet[j] && G[i][j] < minLen){ //若两个节点不在同一连通分量且比当前找到的最短边还短
minLen = G[i][j]; //更新最短边,记录节点序号
minV1 = i;
minV2 = j;
}
}
}
for(int i = 1; i <= n; i++){
if(dSet[i] == dSet[minV2] && i != minV2) //遍历dSet数组,将两个连通分量合为一个
dSet[i] = dSet[minV1]; //即两个分量中的所有节点分量序号统一成一个值
}
dSet[minV2] = dSet[minV1];
if(maxLen < minLen) //用于更新生成树里最长的边
maxLen = minLen;
}
return maxLen;
}
int main()
{
int cases = 0;
cin >> cases;
while (cases--) {
cin >> n;
memset(G, 0, sizeof(G));
for(int i = 1 ; i <= n; i++)
dSet[i] = i; //初始化连通分量数组,初始时每个节点是一个单独的连通分量
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> G[i][j];
}
}
int res = Kruskal();
cout << res << endl;
}
return 0;
}
Followed by: Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator