Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
C++ Kruskal算法AC代码#include <iostream> #include <string.h> using namespace std; int n; //村庄数 int G[505][505]; //邻接矩阵 int dSet[505]; //连通分量数组,用于判断节点(村庄)是否在同一连通分量里 int Kruskal() { int maxLen = 0; for (int k = 0; k < n - 1; k++) { //n个节点的最小生成树有n-1条边,每次连接一条边共需n-1次循环 int minLen = INT_MAX; //初始最短边长定为最大值 int minV1 = 0; int minV2 = 0; for(int i = 1; i <= n; i++){ for(int j = i+1; j <= n; j++){ //目标:遍历邻接矩阵找出全图最短边 if(dSet[i] != dSet[j] && G[i][j] < minLen){ //若两个节点不在同一连通分量且比当前找到的最短边还短 minLen = G[i][j]; //更新最短边,记录节点序号 minV1 = i; minV2 = j; } } } for(int i = 1; i <= n; i++){ if(dSet[i] == dSet[minV2] && i != minV2) //遍历dSet数组,将两个连通分量合为一个 dSet[i] = dSet[minV1]; //即两个分量中的所有节点分量序号统一成一个值 } dSet[minV2] = dSet[minV1]; if(maxLen < minLen) //用于更新生成树里最长的边 maxLen = minLen; } return maxLen; } int main() { int cases = 0; cin >> cases; while (cases--) { cin >> n; memset(G, 0, sizeof(G)); for(int i = 1 ; i <= n; i++) dSet[i] = i; //初始化连通分量数组,初始时每个节点是一个单独的连通分量 for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { cin >> G[i][j]; } } int res = Kruskal(); cout << res << endl; } return 0; } Followed by: Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator