Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

Re:总算弄过了,分享下推导过程,顺便给自己理下思路 PS:这题完全和反正切函数没关系嘛= =

Posted by jiepeipei at 2012-04-11 14:36:50 on Problem 1183
In Reply To:总算弄过了,分享下推导过程,顺便给自己理下思路 PS:这题完全和反正切函数没关系嘛= = Posted by:angeldust at 2012-01-06 13:49:38
> arctan(1/a)=arctan(1/b)+arctan(1/c) 
> 
> arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4) 
> 
> 由公式(4)令p=1/b,q=1/c得:
> 
>   arctan(1/a)=arctan(1/b)+arctan(1/c)=arctan[(1/b+1/c)/(1-1/(b*c))]
> 
> =>1/a=(1/b+1/c)/(1-1/(b*c));
> 
> =>1/a=(b+c)/(b*c-1)
> 
> =>a=(b*c-1)/b+c
> 
> 
>     令x=b+c,y=b;
> 
> 
> =>a=((x-y)*y-1)/x;
> 
> x=(y^2+1)/(y-a);  (1)(a,x,y都为正整数)
> 
> 题目是求x的最小值,那么对(1)求导:
> 
> [2y*(y-a)-(y^2+1)]/(y-a)^2    (2)
> 
> 令(2)=0,得:y^2-2*a*y-1=0
> 
> 由求跟公式可以算出y1=a+sqrt(a^2+1), y2=a-sqrt(a^2+1)(y2<0)
> 
> 即(1)在a-sqrt(a^2+1)<=y<=a+sqrt(a^2+1)上单调
> 
> 由于y是正整数,即在1<=y<=2a上单调
> 
> 又由于x为正整数,显然y>a,即
> 
> (1)在a+1<=y<=2a上单调
> 
> 递增OR递减?
> 
> 把y=a+1和y=2a分别带入(1)得:x=(a+1)^2+1和x=4a+1/a
> 
> 显然在a为正整数的情况下(a+1)^2+1>4a+1/a(真的很显然哦)
> 
> =>(1)在a+1<=y<=2a上单调递减
> 
> x=(y^2+1)/(y-a);  (1)(a,x,y都为正整数)
> 
> 然后嘛,你懂的···(ps:y=a+1时一定有解,分母为1了嘛)
> 
> 不自不觉就写多了,他们说这样的话怎么都能看懂的,我不知道你们信不信,反正我是信了。

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator