| ||||||||||
| Online Judge | Problem Set | Authors | Online Contests | User | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest | |||||||||
总算弄过了,分享下推导过程,顺便给自己理下思路 PS:这题完全和反正切函数没关系嘛= =arctan(1/a)=arctan(1/b)+arctan(1/c)
arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4)
由公式(4)令p=1/b,q=1/c得:
arctan(1/a)=arctan(1/b)+arctan(1/c)=arctan[(1/b+1/c)/(1-1/(b*c))]
=>1/a=(1/b+1/c)/(1-1/(b*c));
=>1/a=(b+c)/(b*c-1)
=>a=(b*c-1)/b+c
令x=b+c,y=b;
=>a=((x-y)*y-1)/x;
x=(y^2+1)/(y-a); (1)(a,x,y都为正整数)
题目是求x的最小值,那么对(1)求导:
[2y*(y-a)-(y^2+1)]/(y-a)^2 (2)
令(2)=0,得:y^2-2*a*y-1=0
由求跟公式可以算出y1=a+sqrt(a^2+1), y2=a-sqrt(a^2+1)(y2<0)
即(1)在a-sqrt(a^2+1)<=y<=a+sqrt(a^2+1)上单调
由于y是正整数,即在1<=y<=2a上单调
又由于x为正整数,显然y>a,即
(1)在a+1<=y<=2a上单调
递增OR递减?
把y=a+1和y=2a分别带入(1)得:x=(a+1)^2+1和x=4a+1/a
显然在a为正整数的情况下(a+1)^2+1>4a+1/a(真的很显然哦)
=>(1)在a+1<=y<=2a上单调递减
x=(y^2+1)/(y-a); (1)(a,x,y都为正整数)
然后嘛,你懂的···(ps:y=a+1时一定有解,分母为1了嘛)
不自不觉就写多了,他们说这样的话怎么都能看懂的,我不知道你们信不信,反正我是信了。
Followed by:
Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator