Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

总算弄过了,分享下推导过程,顺便给自己理下思路 PS:这题完全和反正切函数没关系嘛= =

Posted by angeldust at 2012-01-06 13:49:38 on Problem 1183
arctan(1/a)=arctan(1/b)+arctan(1/c) 

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4) 

由公式(4)令p=1/b,q=1/c得:

  arctan(1/a)=arctan(1/b)+arctan(1/c)=arctan[(1/b+1/c)/(1-1/(b*c))]

=>1/a=(1/b+1/c)/(1-1/(b*c));

=>1/a=(b+c)/(b*c-1)

=>a=(b*c-1)/b+c


    令x=b+c,y=b;


=>a=((x-y)*y-1)/x;

x=(y^2+1)/(y-a);  (1)(a,x,y都为正整数)

题目是求x的最小值,那么对(1)求导:

[2y*(y-a)-(y^2+1)]/(y-a)^2    (2)

令(2)=0,得:y^2-2*a*y-1=0

由求跟公式可以算出y1=a+sqrt(a^2+1), y2=a-sqrt(a^2+1)(y2<0)

即(1)在a-sqrt(a^2+1)<=y<=a+sqrt(a^2+1)上单调

由于y是正整数,即在1<=y<=2a上单调

又由于x为正整数,显然y>a,即

(1)在a+1<=y<=2a上单调

递增OR递减?

把y=a+1和y=2a分别带入(1)得:x=(a+1)^2+1和x=4a+1/a

显然在a为正整数的情况下(a+1)^2+1>4a+1/a(真的很显然哦)

=>(1)在a+1<=y<=2a上单调递减

x=(y^2+1)/(y-a);  (1)(a,x,y都为正整数)

然后嘛,你懂的···(ps:y=a+1时一定有解,分母为1了嘛)

不自不觉就写多了,他们说这样的话怎么都能看懂的,我不知道你们信不信,反正我是信了。

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator