| ||||||||||
| Online Judge | Problem Set | Authors | Online Contests | User | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest | |||||||||
纪念我的第一次动态规划 一次AC的/*
状态:
设sum[j][k]表示以j为起始下标,连续的k个数的和
s为新的一行以j为起始下标,连续的k个数的和
动态转移方程:
sum[j][k]=max{sum[j][k]+s,s};
ans=max{sum[j][k]} (i=0 ~ n-1)
*/
#include <iostream>
using namespace std;
int main(){
int n,i,j,k,a[105][105];
int max=-10000,sum[105][105]={-10000};
cin>>n;
for(i=1;i<=n;i++){
for(j=0;j<n;j++)
cin>>a[i][j];
for(j=0;j<=n-1;j++){ //起始下标为j:0 ~ n-1
int s=0;
for(k=j;k<=n-1;k++){//对应求和下标0:0 ~ n-1 ;1:1 ~ n-1......n-1:n-1
s += a[i][k];
sum[j][k-j+1]=((s+sum[j][k-j+1] > s)?s+sum[j][k-j+1]:s);//动态转移方程
if(sum[j][k-j+1] > max) max=sum[j][k-j+1];
//cout<<sum[j][k-j+1]<<" ";//为可打出sum[j][k-j+1]表示起始下标为j连续的k-j+1个数的和的矩阵
}//cout<<endl;
}//cout<<endl;
}
cout<<max<<endl;
return 0;
}
Followed by:
Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator