Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

高效解法,供路人借鉴~

Posted by yingxiang720 at 2011-03-15 15:20:51 on Problem 2965
/*

参考高手的高效解法:
> 证明:要使一个为'+'的符号变为'-',必须其相应的行和列的操作数为奇数;可以证明,如果'+'位置对应的行和列上每一个位置都进行一次操作,则整个图只有这一'+'位置的符号改变,其余都不会改变.
> 设置一个4*4的整型数组,初值为零,用于记录每个点的操作数,那么在每个'+'上的行和列的的位置都加1,得到结果模2(因为一个点进行偶数次操作的效果和没进行操作一样,这就是楼上说的取反的原理),然后计算整型数组中一的
> 个数即为操作数,一的位置为要操作的位置(其他原来操作数为偶数的因为操作并不发生效果,因此不进行操作)
*********************************
此上证其可以按以上步骤使数组中值都为‘-’
********************************
在上述证明中将所有的行和列的位置都加1后,在将其模2之前,对给定的数组状态,将所有的位置操作其所存的操作数个次数,举例,如果a[i][j]==n,则对(i,j)操作n次,当所有的操作完后,即全为‘-’的数组。
其实就是不模2的操作,作了许多的无用功。
以上的操作次序对结果无影响,如果存在一个最小的步骤,则此步骤一定在以上操作之中。(简单说下:因为以上操作已经包含了所有可改变欲改变位置的操作了)
而模2后的操作是去掉了所有无用功之后的操作,此操作同样包含最小步骤。
但模2后的操作去掉任何一个或几个步骤后,都不可能再得到全为‘-’的。(此同样可证明:因为操作次序无影响,先进行最小步骤,得到全为‘-’,如果还剩下m步,则在全为‘-’的数组状态下进行这m步操作后还得到一个全为
‘-’的数组状态,此只能是在同一个位置进行偶数次操作,与前文模2后矛盾,所以m=0),因此模2后的操作即为最小步骤的操作。
*/
#include <iostream>
using namespace std;

bool mark[4][4];
char s[4][4];

int main()
{
    int i,j,k;
    int ci[16],cj[16];
    int nas = 0;
    memset(mark,0,sizeof(mark));
	for(i = 0;i < 4;i++)
		cin >> s[i];
    for(i = 0;i < 4;i++)
        for(j = 0;j < 4;j++)
        {
            char c = s[i][j];
            if(c == '+')
            {
                mark[i][j] = !mark[i][j];
                for(k = 0;k < 4;k++)
                {
                    mark[i][k] = !mark[i][k];
                    mark[k][j] = !mark[k][j];
                }
            }

        }
    for(i = 0;i < 4;i++)
        for(j = 0;j < 4;j++)
            if(mark[i][j] == true)
            {
                ci[nas] = i + 1;
                cj[nas] = j + 1;
                nas ++;
            }
    printf("%d\n",nas);
    for(i = 0;i < nas;i++)
    {
        printf("%d %d\n",ci[i],cj[i]);
    }
    return 0;
}












Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator