Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

Re:得意次

Posted by Aidway at 2010-07-08 23:19:58 on Problem 1519
In Reply To:得意次 Posted by:Aidway at 2010-07-08 23:19:04
> 伍拾题,庆祝!
转载证明,感激!
设自然数N=a[n]a[n-1]…a[0],其中a[0],a[1]、…、a[n]分别是个位、十位、…上的数字,再设M=a[0]+a[1]+…+a[n],求证:N≡M(mod 9).
证明:
∵ N=a[n]a[n-1]…a[0]=a[n]*10^n+a[n-1]*10^(n-1)+…+a[1]*10+a[0].
又∵ 1≡1(mod 9),
10≡1(mod 9),
102≡1(mod 9),
…
10n≡1(mod 9).
上面这些同余式两边分别同乘以a[0]、a[1]、a[2]、…、a[n],再相加得:
a[0]+a[1]*10+…+a[n]*10^n≡(a[0]+a[1]+…+a[n])(mod 9),
即 N≡M(mod 9)   

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator