Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Re:得意次In Reply To:得意次 Posted by:Aidway at 2010-07-08 23:19:04 > 伍拾题,庆祝! 转载证明,感激! 设自然数N=a[n]a[n-1]…a[0],其中a[0],a[1]、…、a[n]分别是个位、十位、…上的数字,再设M=a[0]+a[1]+…+a[n],求证:N≡M(mod 9). 证明: ∵ N=a[n]a[n-1]…a[0]=a[n]*10^n+a[n-1]*10^(n-1)+…+a[1]*10+a[0]. 又∵ 1≡1(mod 9), 10≡1(mod 9), 102≡1(mod 9), … 10n≡1(mod 9). 上面这些同余式两边分别同乘以a[0]、a[1]、a[2]、…、a[n],再相加得: a[0]+a[1]*10+…+a[n]*10^n≡(a[0]+a[1]+…+a[n])(mod 9), 即 N≡M(mod 9) Followed by: Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator