Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Re:求解10^x = 1 (mod 9*L/gcd(L,8))的满足x>0的最小解就是答案_证明内详In Reply To:Re:求解10^x = 1 (mod 9*L/gcd(L,8))的满足x>0的最小解就是答案_证明内详 Posted by:tanyin at 2009-08-07 16:45:03 > (10^x-1) = (9L/8)*p > 得到 > (10^x-1) = 9 * L/(gcd(L,8)) * P/(gcd(P,8)) > 既然 L/(gcd(L,8))和 P/(gcd(P,8)) 都是整数就可以把9×P/(gcd(P,8))看成一个整数K > 那么(10^x-1)= L/(gcd(L,8)) * k ,即(10^x-1)= 1 mode( L/(gcd(L,8)) ) > 为什么还要乘以以个9 (10^x-1)= 1 mode( 9×L/(gcd(9×L,8)) ) ; > 9×L/(gcd(9×L,8)) (9,8) = 1,所以 (9L,8) = (L,8) 所以你那么写也是可以的吧 Followed by: Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator