Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
经典DP,不需要那样子做In Reply To:小弟的一点想法.... Posted by:2004huangyimin at 2007-07-30 00:57:43 观察题目给出的一个最优解: AGTGATG -GTTA-G 将其从某一处切开,如果左边部分的分值不是最大,那么将其进行调整,使其分值变大,则整个解分值变大,与已知的最优矛盾。所以左边部分的分值必是最大。同理,右边也是。可见满足最优子结构的性质。考虑使用DP: 设两个DNA序列分别为s1,s2,长度分别为len1,len2,score为分值表。f[i,j]表示子串s1[1..i]和s2[1..j]的分值。考虑一个f[i,j],我们有: 1.s1取第i个字母,s2取“-”:f[i-1,j] + score[s1[i],'-'] 2.s1取“-”,s2取第j个字母:f[i,j-1] + score['-',s2[j]] 3.s1取第i个字母,s2取第j个字母:f[i-1,j-1] + score[s1[i],s2[j]] 即f[i,j] = max(f[i-1,j] + score[s1[i],'-'], f[i,j-1] + score['-',s2[j]], f[i-1,j-1] + score[s1[i],s2[j]]); 然后考虑边界条件,这道题为i或j为0的情况。 当i=j=0时,即为f[0,0],这是在计算f[1,1]时用到的,根据f[1,1] = f[0,0] + score[s1[i], s2[j]],明显有f[0,0] = 0。 当i=0时,即为f[0,1..len2],有了f[0,0],可以用f[0,j] = f[0,j-1] + table['-',s2[j]]来计算。 当j=0时,即为f[1..len1,0],有了f[0,0],可以用f[i,0] = f[i-1,0] + table[s1[i],'-']来计算。 至于计算顺序,只要保证计算f[i,j]的时候,使用到的f[i-1,j],f[i,j-1],f[i-1,j-1]都计算出来了就行了。所谓划分阶段也就是为了达到这个目的。这样我们使用一个二重循环就可以了。 Followed by:
Post your reply here: |
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator