Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register

我的推导~

Posted by 5l2 at 2008-09-04 13:50:47 on Problem 3682 and last updated at 2008-09-04 13:51:29
设第j天结束的概率为 Tj
Tj=C(j-1,k-1)*p^k*(1-p)^(j-k) (j-1<k-1时C(j-1,k-1)=0)
∑Tj=1 即 p^k/(1-p)^k ∑C(j-1,k-1)*(1-p)^j=1
我们可以得
∑C(j-1,k-1)*(1-p)^j=(1-p)^k/p^k         (1)

the expected number of days 
∑j*Tj=p^k/(1-p)^k *∑j*C(j-1,k-1)*(1-p)^j
      =k*p^k/(1-p)^k *∑C(j,k)*(1-p)^j     //j*C(j-1,k-1)=k*C(j,k)
      =k*p^k/(1-p)^(k+1) *∑C(j,k)*(1-p)^(j+1)
      =k*p^k/(1-p)^(k+1) * (1-p)^(k+1)/p^(k+1)  //由(1)得
      =k/p
∑j*j*Tj 同理可得(详见链接)
http://hi.baidu.com/5l2_/blog/item/1fd798adf2a8fe0f4b36d615.html

Followed by:

Post your reply here:
User ID:
Password:
Title:

Content:

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator