Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
Statistical Charts
Submit Problem
Online Status
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Fermat Point in Quadrangle
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 912Accepted: 215


In geometry the Fermat point of a triangle, also called Torricelli point, is a point such that the total distance from the three vertices of the triangle to the point is the minimum. It is so named because this problem is first raised by Fermat in a private letter. In the following picture, P0 is the Fermat point. You may have already known the property that:

Alice and Bob are learning geometry. Recently they are studying about the Fermat Point.
Alice: I wonder whether there is a similar point for quadrangle.
Bob: I think there must exist one.
Alice: Then how to know where it is? How to prove?
Bob: I don’t know. Wait… the point may hold the similar property as the case in triangle.
Alice: It sounds reasonable. Why not use our computer to solve the problem? Find the Fermat point, and then verify your assumption.
Bob: A good idea.

So they ask you, the best programmer, to solve it. Find the Fermat point for a quadrangle, i.e. find a point such that the total distance from the four vertices of the quadrangle to that point is the minimum.


The input contains no more than 1000 test cases.
Each test case is a single line which contains eight float numbers, and it is formatted as below:
x1 y1 x2 y2 x3 y3 x4 y4
xi, yi are the x- and y-coordinates of the ith vertices of a quadrangle. They are float numbers and satisfy 0 ≤ xi ≤ 1000 and 0 ≤ yi ≤ 1000 (i = 1, …, 4).
The input is ended by eight -1.


For each test case, find the Fermat point, and output the total distance from the four vertices to that point. The result should be rounded to four digits after the decimal point.

Sample Input

0 0 1 1 1 0 0 1
1 1 1 1 1 1 1 1
-1 -1 -1 -1 -1 -1 -1 -1

Sample Output



[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator