Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register
Language:
Asteroids
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 695Accepted: 245Special Judge

Description

Association of Collision Management (ACM) is planning to perform the controlled collision of two asteroids. The asteroids will be slowly brought together and collided at negligible speed. ACM expects asteroids to get attached to each other and form a stable object.
Each asteroid has the form of a convex polyhedron. To increase the chances of success of the experiment ACM wants to bring asteroids together in such manner that their centers of mass are as close as possible. To achieve this, ACM operators can rotate the asteroids and move them independently before bringing them together.
Help ACM to find out what minimal distance between centers of mass can be achieved.
For the purpose of calculating center of mass both asteroids are considered to have constant density.

Input

Input file contains two descriptions of convex polyhedra.
The first line of each description contains integer number n - the number of vertices of the polyhedron (4 <= n <= 60). The following n lines contain three integer numbers xi, yi, zi each - the coordinates of the polyhedron vertices (-104 <= xi, yi, zi <= 104). It is guaranteed that the given points are vertices of a convex polyhedron, in particular no point belongs to the convex hull of other points. Each polyhedron is non-degenerate.
The two given polyhedra have no common points.

Output

Output one floating point number - the minimal distance between centers of mass of the asteroids that can be achieved. Your answer must be accurate up to 10-5.

Sample Input

8
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
5
0 0 5
1 0 6
-1 0 6
0 1 6
0 -1 6

Sample Output

0.75

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator