Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|

Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |

Language: Pseudoprime numbers
Description Fermat's theorem states that for any prime number a (mod p). That is, if we raise a to the p^{th} power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)Given 2 < Input Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing Output For each test case, output "yes" if p is a base- Sample Input 3 2 10 3 341 2 341 3 1105 2 1105 3 0 0 Sample Output no no yes no yes yes Source Waterloo Local Contest, 2007.9.23 |

[Submit] [Go Back] [Status] [Discuss]

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di

Any problem, Please Contact Administrator