Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Language: Pseudoprime numbers
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.) Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime. Input Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a. Output For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no". Sample Input 3 2 10 3 341 2 341 3 1105 2 1105 3 0 0 Sample Output no no yes no yes yes Source Waterloo Local Contest, 2007.9.23 |
[Submit] [Go Back] [Status] [Discuss]
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator