Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Language: Language Recognition
Description Deterministic Final-State Automaton (DFA) is a directed multigraph whose vertices are called states and edges are called transitions. Each DFA transition is labeled with a single letter. Moreover, for each state s and each letter l there is at most one transition that leaves s and is labeled with l. DFA has a single starting state and a subset of final states. DFA defines a language of all words that can be constructed by writing down the letters on a path from the starting state to some final state. Given a language with a finite set of words it is always possible to construct a DFA that defines this language. The picture on the left shows such DFA for the language consisting of three words: fix, foo, ox. However, this DFA has 7 states, which is not optimal. The DFA on the right defines the same language with just 5 states. Your task is to find the minimum number of states in a DFA that defines the given language. Input The first line of the input file contains a single integer number n (1 ≤ n ≤ Output Write to the output file a single integer number — the minimal number of states in a DFA that defines the language from the input file. Sample Input
Sample Output
Source |
[Submit] [Go Back] [Status] [Discuss]
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator