Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register
Language:
Point of view in Flatland
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 990Accepted: 234

Description

Everything is flat in Flatland. The planets are round but they are flat, that is, they are discs in a plane.

The centers of three planets in Flatland are given and their radii. Find the point in Flatland from which all three planets are visible at the same angle, that is, they appear to have the same size measured as angular diameter. Let's call such a point an isoobservation point. There can be at most two such points and we are interested in finding the one that gives the largest angular diameter of the planets.

Input

Input consists of several cases, each case is presented at a single line. Each line has nine numbers, three for each disc. Each triple has x and y coordinates of the disc center and the radius r of that disc. The input is terminated by a line with nine zeros and this line should not be processed.

Output

For each case of input, print the x and y coordinates of the isoobservation point as described above in the format shown in the sample; but if there is no such point, print   No solution

Sample Input

10 10 1 30 30 1 50 10 1
0 30 1.0 30 0 1.0 40 40 1.0
10 30 1.0 31 0 1.0 42 43 1.0
10 42 1 62.8 62.8 1 52.5 -25.3 1
10 42 1.1 62.8 62.8 1.2 52.5 25.3 25
0 0 0 0 0 0 0 0 0

Sample Output

30.00 10.00
23.00 23.00
31.58 22.76
49.27 19.73
No solution

Hint

To simplify the problem you may assume that:

  • The discs centers are not all collinear.
  • The discs are totally disjoint.
  • The discs are transparent and non-refractive. That is, a disc is visible and has the same apparent shape and size, whether or not there's another disc in front of it.
  • The input data are such that the existence or non-existence of such a point is computable, even with slight rounding error. But use double-precision, eh?

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator