Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register
Language:
Super Knight
Time Limit: 3000MSMemory Limit: 131072K
Total Submissions: 216Accepted: 48Special Judge

Description

A super knight moves in the infinite n-dimensional space. Each move it can perform is described by a vector – a vector (a1, a2, …, an) indicates that a move from the square (with coordinates) (x1, x2, …, xn) to the square (x1 + a1, x2 + a2, …, xn + an) or (x1a1, x2a2, …, xnan) is possible. Each knight has a prescribed set of such vectors, describing the moves this knight can make. For each knight we assume that this knight can reach anywhere in the space if it is allowed (but actually disallowed) to move along a fractional part of a vector.

We say two knights are equivalent, if they can reach exactly the same squares starting from the square (0, 0, …, 0) (by making many moves, perhaps). (Let us point out that equivalent knights may reach these squares in different number of moves). It can be shown that for every knight there exists an equivalent one whose moves are described by only n vectors.

Given a set of  m (m > n) vectors describing the moves of a super knight, determine an equivalent knight as mentioned above.

Input

The input contains exactly one test case. The first line of input contains two integers m and n (2 ≤ n < m ≤ 100, n ≤ 10, n · m ≤ 200). The next m lines each contains an integral n-dimensional vector (a1, a2, …, an). It is guaranteed that for all i (1 ≤ i ≤ n) if n = 2, |ai| ≤ 103, otherwise |ai| ≤ 102.

Output

Output n n-dimensional vectors describing the moves of an equivalent knight, each on a separate line.

Sample Input

3 2
1 0
0 5
0 7

Sample Output

1 0
0 1

Hint

Do not output any number longer than 50 digits. The test cases are designed that to each one there is a solution not involving any number exceeding 1020 by magnitude.

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator