   Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
Register
Language:
From Pythagoras to …
 Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 2867 Accepted: 371

Description

There was a footpath, leading across fields to New Southgate, and I used to go there alone to watch the sunset and contemplate suicide. I did not, however, commit suicide, because I wished to know more of mathematics.

— Bertrand Russell

Mathematics is beautiful, isn’t it? Well, I’m sure you all know the famous Pythagorean theorem. He found an amazing fact about triangles, that is if the triangle has a right angle, the following relation holds:

a2 + b2 = c2, where c is the length of the hypotenuse.

However, Pythagoras told us nothing more about the generalization below:

x2 + y2 = n, where n is an integer.

It is a natural tendency for mathematicians to solve whether an equation has integer solutions or not. But for you, a future computer scientist, will you also try to do some of the mathematicians’ work?

To simplify this problem, you are only required to find out whether the above equation x2 + y2 = n has integer solutions.

Input

The first line of the input is an integer T (T ≤ 50), and the following T lines have an integer n each. It is guaranteed that each n fits in signed 64-bit integer type.

Output

For each test case output “`YES`” or “`NO`” indicating that the equation has or doesn’t have integer solutions, respectively.

Sample Input

```1
0```

Sample Output

`YES`

Source

[Submit]   [Go Back]   [Status]   [Discuss] Home Page Go Back To top