Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|

Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |

Language: Football
Description Consider a single-elimination football tournament involving 2 Given a matrix p is the probability that team _{ij}i will beat team j in a match determine which team is most likely to win the tournament.Input The input test file will contain multiple test cases. Each test case will begin with a single line containing P will satisfy the constraints that p = 1.0 − _{ij}p for all _{ji}i ≠ j, and p = 0.0 for all _{ii}i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the `double` data type instead of `float` .Output The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01. Sample Input 2 0.0 0.1 0.2 0.3 0.9 0.0 0.4 0.5 0.8 0.6 0.0 0.6 0.7 0.5 0.4 0.0 -1 Sample Output 2 Hint In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:
The next most likely team to win is team 3, with a 0.372 probability of winning the tournament. Source |

[Submit] [Go Back] [Status] [Discuss]

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di

Any problem, Please Contact Administrator