Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Language: M × N Puzzle
Description The Eight Puzzle, among other sliding-tile puzzles, is one of the famous problems in artificial intelligence. Along with chess, tic-tac-toe and backgammon, it has been used to study search algorithms. The Eight Puzzle can be generalized into an M × N Puzzle where at least one of M and N is odd. The puzzle is constructed with MN − 1 sliding tiles with each a number from 1 to MN − 1 on it packed into a M by N frame with one tile missing. For example, with M = 4 and N = 3, a puzzle may look like:
Let's call missing tile 0. The only legal operation is to exchange 0 and the tile with which it shares an edge. The goal of the puzzle is to find a sequence of legal operations that makes it look like:
The following steps solve the puzzle given above.
Given an M × N puzzle, you are to determine whether it can be solved. Input The input consists of multiple test cases. Each test case starts with a line containing M and N (2 ≤ M, N ≤ 999). This line is followed by M lines containing N numbers each describing an M × N puzzle. The input ends with a pair of zeroes which should not be processed. Output Output one line for each test case containing a single word YES if the puzzle can be solved and NO otherwise. Sample Input 3 3 1 0 3 4 2 5 7 8 6 4 3 1 2 5 4 6 9 11 8 10 3 7 0 0 0 Sample Output YES NO Source POJ Monthly--2006.07.30, newton88518 |
[Submit] [Go Back] [Status] [Discuss]
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator