Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register
Language:
The Brick Stops Here
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 1456Accepted: 446

Description

You have been hired by several clients of a factory that manufactures brass bricks. Brass is an alloy of copper and zinc; each brick weighs 1000 grams, and the copper content of a brick can range from 1 to 999 grams. (Note that brass with less than 55% or more than 62% of copper is practically useless; however, this is irrelevant for this question) The factory manufactures, through various processes, different types of brick, each of which has a different copper concentration and price. It distributes a catalog of these types to its customers.
Your clients desire to buy a certain number (M) of bricks, which for, uh, religious reasons must be of different types. They will be melted together, and the resultant mixture must have a concentration of at least CMin and at most CMax grams of copper per kilogram. Their goal is to pick the M types of brick so that the mixture has the correct concentration and the price of the collection is minimized. You must figure out how to do this. M, CMin, and CMax will vary depending on the client.

Input

The first part of input consists of a line containing a number N (1 <= N <= 200), the number of brick types, and then N lines containing the copper concentration (between 1 and 999) and price (in cents) of each brick type. No brick costs more than 10 dollars.
The second part consists of a line containing a number C (1 <= C <= 100), the number of clients you are serving, followed by C lines containing M (1 <= M <= 20), CMin (1 <= CMin <= 999), and CMax (1 <= CMax <= 999) for each client.

All input numbers will be positive integers.

Output

Output consists of a line for each client containing the minimum possible price for which they can purchase bricks to meet their demands. If there is no way to match their specifications, output "impossible".

Sample Input

11
550 300
550 200
700 340
300 140
600 780
930 785
730 280
678 420
999 900
485 390
888 800
3
2 500 620
9 550 590
9 610 620

Sample Output

420
impossible
3635

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator