Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Language: Hard to Believe, but True!
Description The fight goes on, whether to store numbers starting with their most significant digit or their least significant digit. Sometimes this is also called the "Endian War". The battleground dates far back into the early days of computer science. Joe Stoy, in his (by the way excellent) book "Denotational Semantics", tells following story:
[C. Strachey - private communication.]" You will play the role of the audience and judge on the truth value of Turing's equations. Input The input contains several test cases. Each specifies on a single line a Turing equation. A Turing equation has the form "a+b=c", where a, b, c are numbers made up of the digits 0,...,9. Each number will consist of at most 7 digits. This includes possible leading or trailing zeros. The equation "0+0=0" will finish the input and has to be processed, too. The equations will not contain any spaces. Output For each test case generate a line containing the word "True" or the word "False", if the equation is true or false, respectively, in Turing's interpretation, i.e. the numbers being read backwards. Sample Input 73+42=16 5+8=13 10+20=30 0001000+000200=00030 1234+5=1239 1+0=0 7000+8000=51 0+0=0 Sample Output True False True True False False True True Source |
[Submit] [Go Back] [Status] [Discuss]
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator