Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register
Language:
Antiarithmetic?
Time Limit: 1000MSMemory Limit: 30000K
Total Submissions: 1351Accepted: 676

Description

A permutation of n is a bijective function of the initial n natural numbers: 0, 1, ... n-1. A permutation p is called antiarithmetic if there is no subsequence of it forming an arithmetic progression of length bigger than 2, i.e. there are no three indices 0 <= i < j < k < n such that (pi , pj , pk) forms an arithmetic progression.

For example, the sequence (2, 0, 1, 4, 3) is an antiarithmetic permutation of 5. The sequence (0, 5, 4, 3, 1, 2) is not an antiarithmetic permutation as its first, fifth and sixth term (0, 1, 2) form an arithmetic progression; and so do its second, forth and fifth term (5, 3, 1).

Your task is to check whether a given permutation of n is antiarithmetic.

Input

There are several test cases, followed by a line containing 0. Each test case is a line of the input file containing a natural number 3 <= n <= 10000 followed by a colon and then followed by n distinct numbers separated by whitespace. All n numbers are natural numbers smaller than n.

Output

For each test case output one line with yes or no stating whether the permutation is antiarithmetic or not.

Sample Input

3: 0 2 1 
5: 2 0 1 3 4
6: 2 4 3 5 0 1
0

Sample Output

yes
no
yes

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator