Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
Home Page
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
User ID:
Password:
  Register
Language:
Mint
Time Limit: 3000MSMemory Limit: 30000K
Total Submissions: 1728Accepted: 603

Description

The Royal Canadian Mint has commissioned a new series of designer coffee tables, with legs that are constructed from stacks of coins. Each table has four legs, each of which uses a different type of coin. For example, one leg might be a stack of quarters, another nickels, another loonies, and another twonies. Each leg must be exactly the same length.
Many coins are available for these tables, including foreign and special commemorative coins. Given an inventory of available coins and a desired table height, compute the lengths nearest to the desired height for which four legs of equal length may be constructed using a different coin for each leg.

Input

Input consists of several test cases. Each case begins with two integers: 4 <= n <= 50 giving the number of types of coins available, and 1 <= t <= 10 giving the number of tables to be designed. n lines follow; each gives the thickness of a coin in hundredths of millimetres. t lines follow; each gives the height of a table to be designed (also in hundredths of millimetres). A line containing 0 0 follows the last test case.

Output

For each table, output a line with two integers: the greatest leg length not exceeding the desired length, and the smallest leg length not less than the desired length.

Sample Input

4 2
50
100
200
400
1000
2000
0 0

Sample Output

800 1200
2000 2000

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top


All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator