Online JudgeProblem SetAuthorsOnline ContestsUser
Web Board
F.A.Qs
Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
Register
Language:
Homogeneous Squares
 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 5632 Accepted: 2772

Description

Assume you have a square of size n that is divided into n × n positions just as a checkerboard. Two positions (x1, y1) and (x2, y2), where 1 ≤ x1, y1, x2, y2n, are called “independent” if they occupy different rows and different columns, that is, x1x2 and y1y2. More generally, n positions are called independent if they are pairwise independent. It follows that there are n! different ways to choose n independent positions.

Assume further that a number is written in each position of such an n × n square. This square is called “homogeneous” if the sum of the numbers written in n independent positions is the same, no matter how the positions are chosen. Write a program to determine if a given square is homogeneous!

Input

The input contains several test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines contains n numbers, separated by exactly one space character. Each number is an integer from the interval [−1000000, 1000000].

The last test case is followed by a zero.

Output

For each test case output whether the specified square is homogeneous or not. Adhere to the format shown in the sample output.

Sample Input

```2
1 2
3 4
3
1 3 4
8 6 -2
-3 4 0
0```

Sample Output

```homogeneous
not homogeneous```

Source

[Submit]   [Go Back]   [Status]   [Discuss]