Online Judge | Problem Set | Authors | Online Contests | User | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Web Board Home Page F.A.Qs Statistical Charts | Current Contest Past Contests Scheduled Contests Award Contest |
Language: Homogeneous Squares
Description Assume you have a square of size n that is divided into n × n positions just as a checkerboard. Two positions (x1, y1) and (x2, y2), where 1 ≤ x1, y1, x2, y2 ≤ n, are called “independent” if they occupy different rows and different columns, that is, x1 ≠ x2 and y1 ≠ y2. More generally, n positions are called independent if they are pairwise independent. It follows that there are n! different ways to choose n independent positions. Assume further that a number is written in each position of such an n × n square. This square is called “homogeneous” if the sum of the numbers written in n independent positions is the same, no matter how the positions are chosen. Write a program to determine if a given square is homogeneous! Input The input contains several test cases. The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines contains n numbers, separated by exactly one space character. Each number is an integer from the interval [−1000000, 1000000]. The last test case is followed by a zero. Output For each test case output whether the specified square is homogeneous or not. Adhere to the format shown in the sample output. Sample Input 2 1 2 3 4 3 1 3 4 8 6 -2 -3 4 0 0 Sample Output homogeneous not homogeneous Source |
[Submit] [Go Back] [Status] [Discuss]
All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator